
1

Should Email Remain ‘Dumb’?

Tuesday, 29 October, 2022 FOR IMMEDIATE RELEASE ‘BenFranklin’ Email Virus:
Government agency issues urgent alert about email-script virus; cross-mailing AMP
exploit spiking global email volumes 100x.

Gmail and Outlook 365 users are urged to be extremely cautious about opening
messages marked “FWD:” from their most-frequent correspondents. Messages may
contain the ‘BenFranklin’ zero-day exploit, which begins forward random inbox
messages to every person in a user’s address book. No activity is visible, and
messages appear to be forwarded from the original user.

This is a fictional headline, set in the future.
No such “email script virus” exists.
But if email becomes scriptable, it’s impossible to make it impossible.

A technical framework called AMP for Email (‘Accelerated Mobile Pages’), pioneered
by Google, subsequently released as open source to be stewarded by the OpenJS
Foundation, is gaining some traction in the email marketplace. It allows email
clients to do something they haven’t done to date: run script commands locally.

AMP aims at providing useful web-like capabilities within email messages; Google’s
guidelines state that “users must be able to experience the same content and
complete the same actions on AMP pages as on the corresponding canonical
pages, where possible.” AMP for Email is gaining some traction at different tiers of
the email service-provider spectrum, from AWeber to Adobe.

The purpose of this essay is not a security critique of AMP, or a discussion of
technical standards and market power. My aim is to make the argument that
introducing computing operations, however limited, and an email-specific scripting
language, however limited, makes the risk of eventual security issues, lessening of
user control, and erosion of trust in email inevitably higher.

Email is one of the few mainstream platforms that has stayed obstinately “dumb” —
inherently incapable of computing operations of and on its own. The temptation to
change that, and introduce “smart”, complex functions on par with other channels
and standards, is understandable. But it introduces risks that, in my opinion, cannot
be avoided no matter how cleverly AMP for Email is engineered. Is the gain worth
the cost?

https://support.google.com/webmasters/answer/6340290

2

Why Risk Is Inevitable: Fundamental Insights About Computing
Seminal computer scientist Alan Turing's paper 'On Computable Numbers' included
the key insight that all computing machines are essentially interchangeable: “It is
possible to invent a single machine which can be used to compute any computable
sequence.”

Turing recognized that the logical operations at the foundations of computing are
universal, not specific to digital devices. Case in point: parallel-supercomputing
pioneer Danny Hillis built a functional digital computer with Tinkertoys. In a brilliant
leap of mathematical insight, Turing realized that the paper tape-reader of his day—
and our cloud VMs—are fundamentally interchangeable. Computing machines are
frequently given his shorthand description "universal machines", or sometimes
"Turing machines."

Turing’s insight as a major logical premise has an unavoidable corollary:

Major premise (Turing): “All computing machines are universal computing
machines, capable of running any computing operation.”

Minor premise: “________ is a computing machine.”
Conclusion: Therefore, any computing operation can theoretically be

done on this ________ machine.

I'll label this "Turing's Corollary" for this discussion.

Turing's Corollary implies that the probability of a Turing machine being used for
purposes other than the users' is never zero.

Good and Bad Are Not Computational
Computing machines, like other tools, evolve and develop to perform the tasks
needed of them. While in theory computers are all "universal machines", they
become specialized for given purposes. The Turing machine of a game-console
operating system, for example, handles graphical operations far more quickly than
something like a programmable logic controller.

Purpose, however, is defined externally from computability. While this seems like a
statement of basic utility — rocks make better hammers than marshmallows — in
the domain of Turing machines, it also defines their fundamental vulnerability.

Turn the logic inside-out to see the structure.

3

Turing Machine X can perform (in theory) any computation. The purpose that the
user defines for that machine, or that the maker designs it to fulfill, doesn't limit
what the machine can actually do in a computational sense. It is a universal
computing machine.

If someone else wants Machine X to compute something else, it's fundamentally
capable of running their operation. Whether that other party has to program in a
particular language or use a format specific to a given machine is beside the point.
Within the logical premise of “universal computing”, qualities like “purposeful” for
the user, and “non-purposeful” (or even “harmful”), are not inherent to computing
itself.

The most obvious manifestation of this in the world is the vast range of programs
called "viruses", "malware", and other ill names. For example, the buyer of a personal
computer wants it to browse, or read email, or run a spreadsheet. Some other actor
sees profit in having it report on the user, or expose their data, or run other
calculations (e.g. Bitcoin). That “bad” actor may have to evade security mechanisms,
and learn the particular language and structure of that machine, but at a
fundamental level, the "mal" operations they desire are possible because it is a
universal machine. Mal is in the eye of the beholder, not the digital innards of the
machine.

Turing’s corollary in a commercial context implies that the probability of a Turing
machine being used to maximize other parties’ gain is not zero. This, too, is natural; if
the capability to do something more-profitable is there, and if programming these
profitable actions is possible (and, critically, largely invisible), someone will probably
do it. Over time, development and evolution of devices involved in commercial
activities is driven by improving these invisible commercial functions, not just their
user-purposed functions.

Javascript Evolution Is An Example
The Javascript Turing machine that operates within modern web browsers is a living
example of this behavior. Initially derided as a toy language, with painfully slow
“virtual machines”, Javascript and the VMs that run it have been refined and
improved to such a degree that they are now routinely used for large and complex
cloud functions, and frequently run the 'full stack' of computing tasks.

As these capabilities have advanced, so have the range of actions and “mis-actions.”
On balance, the Javascript VM within web browsers is used as much (or more) by
other parties than by the nominal owner/user of the browser. For example, a web
page may appear “static” to the user, but it will run on average 9 Javascript “trackers”

4

and send/receive 33 tracking requests, manipulating or aggregating data for their
distant makers' commercial benefit. On a heavily-commercialized web page,
Javascript tracker and script operations may run into the hundreds.

That Javascript Turing machine, in other words, is running operations that the user
might well not want. But because it is a universal machine, the definition of
“acceptable operation” (and control of data) isn’t really in the user’s control. That
universal machine can be quietly working in the interests of distant masters.

This pattern writ large creates a constant game of whack-a-Turing, played out on the
computational landscape. Browser VMs beget ads; well-meaning browser makers
add ad-blockers; ad-blockers are co-opted to be ad-ware of some other sort, and so
on. Ditto virus/anti, ditto apps and purchases, games and loot boxes, cyber-currency
farms and clouds, etc. The cycle won’t stop precisely because purpose and
permission are external to computation; any computing machine is theoretically
capable of operations for which it wasn't designed or which aren't desired by the
nominal owners or users.

When you allow “some operations”, you lose full control of “which operations.”

It’s Turings All The Way Down
A centrifuge spins liquid samples at high speed, separating substances of greater
and lesser density; would that email clients could. Modern centrifuges run by
programmable logic controllers (PLCs) can perform extraordinarily sophisticated
separation. But PLCs are Turing machines, controlled by Turing machines running
on/within other Turing machines. A famous, incredibly complex ‘malware’ called
Stuxnet, first uncovered in 2010, attacked centrifuge PLCs.

Stuxnet exploits multiple “zero-day” (unknown) vulnerabilities in the Windows OS,
Siemens Step7 software, and centrifuge PLCs to collect information and ultimately
instruct the centrifuges to tear themselves apart. The Stuxnet “worm” may be one of
the most elegant and complex set of “mal” computables ever designed. Some
200,000 computers have told 1,000 centrifuges to spin to death to date.

Interesting but irrelevant? Hardly. Stuxnet — singularly brilliant — exploits the stack
of Turing-machine-on-Turing-machines.

Because Turing machines are logical constructs rather than physical constructs, it
was inevitable that people would create machines-within-machines. This
Babushka-doll architecture has been extraordinarily useful; among other things, it
midwifed the Internet when enterprising grad students realized that separate
computers used as “network controllers” could enable disparate kinds of machines

5

to work on a common network. These eventually became the “network card” — yet
another specialized Turing machine. Cloud computing systems like AWS and Azure
are the world’s largest Babushka nest of Turing machines, with Kubernetes
orchestras, VM ensembles and OS soloists playing code in a myriad of languages.

It’s an extraordinary achievement, but at a cost. Every interface between layers
exposes additional vulnerabilities for operations that may not be desired. Each virtual
computing machine is, almost by definition, only as secure as the others upon which
it runs or rests. Questions of “good” and “bad” operations become more nebulous
with each layer.

“But We Can Stop This With Good Security”
Of course, this problem of desired/undesired operations has been recognized and
addressed, over and over. Super-smart teams go to extraordinary lengths to design
and maintain the security systems of computing machines.

Inevitably, someone finds a way “around”, in, or through those mechanisms. It
shouldn’t be a surprise, for several reasons. One, it’s logically unavoidable by virtue of
Turing’s corollary. Two, the stack of logic-upon-logic-upon-logic in digital devices —
particular nested machines — is too complex. It’s impossible to close every digital
door, window and keyhole. Three, many (most) cyber-security mechanisms are
themselves additional compute operations, externally defined as “purposeful.”

The fourth and most common vulnerability — the behavior of the people using the
machines — sits right at that strange boundary condition of “purposeful operation.”
If I can convince you to change your password and tell me the new one, that
“security mechanism” is now a “mal” operation.

As any security expert will tell you, the only secure computer is one that is turned off;
in effect, no longer operable as a Turing machine.

What Does All This Theory Have To Do With Email?
I would argue that in considering whether email should finally become “a Turing
machine”, it has a great deal to with email.

The current set of Internet protocols and standards that define email do not include
a Turing machine. Email clients themselves don’t run Javascript, or Java, or any other
language. The HTML and CSS standards supported by email are limited, and likely
don’t reach the threshold for “Turing completeness.” Email is, for lack of a better 1

1 https://en.wikipedia.org/wiki/Turing_completeness

6

word, "dumb". While email clients run on Turing machines, up until now they
haven’t contained a Turing machine of their own.

AMP proposes to change that, with the best of intentions.

“The road to hell is paved with good intentions.”
—aphorism, author unknown

AMP for Email “allows senders to include AMP components inside rich engaging
emails, making modern app functionality available within email. This dynamic
email format provides a subset of AMPHTML components for use in email
messages, that allows recipients of AMP emails to interact dynamically with
content directly in the message.”

These are the kind of goals with which the cycle of Yet Another Turing Machine
always start. They make tempting sense.

“More than 270 billion emails are sent every day, it is the pillar of many consumer
and enterprise workflows. However the content that is sent in an email message is
still limited – messages are static, can become out of date, and are not actionable
without opening a browser. AMP email seeks to enhance and modernize the email
experience through added support for dynamic content and interactivity while
keeping users safe.”

Yes, it would be great if email were functional and programmable and rich.

Yes, the limitations of email in its current form are severe compared with most other
common tools and channels.

Yes, mobile use would improve with tight, constrained, super-secure script options.

“The idea of an Accelerated Mobile Page is that the internet should be user-first,
and all other content that the user doesn’t care about comes second.” says one of
the early ESP AMP adopters. User-first may be the goal, but the machine moving us
to that goal is...a Turing machine. Turing’s corollary says that user-first does not mean
user-only.

The AMP team acknowledges the risk:

“If you have worked with emails before, the idea of placing a script into an
email may set off alarm bells in your head! Rest assured, email providers
who support AMP emails enforce fierce security checks that only allow

7

vetted AMP scripts to run in their clients. This enables dynamic and
interactive features to run directly in the recipients mailboxes with no
security vulnerabilities! Read more about the required markup for AMP
Emails here.”

No doubt the security designs and practices will be the best possible. But fierce
security checks are like fierce security dogs; someone with a different agenda will,
inevitably, bring a T-bone or tranquilizer gun, and your inbox will become the latest
arena for a rousing game of whack-a-mal.

By accepting a Turing machine (scripting) in email, the probability of email being
used for purposes other than the user’s email will move above zero. That’s not a
critique of AMP, or of the security design. It’s just an inevitable, logical consequence
that has proved out, historically, on a staggering range of digital devices - many of
them (arguably) far less complex than the Javascript VMs that will run AMP
operations.

The intent may be to restrict the language to ‘vetted AMP scripts.’ But these scripts
operate and execute within a nested set of virtual and real machines. The design
and security of those machines is inherently part of the operation within the AMP
machine, and their vulnerabilities are AMPs vulnerabilities.

In truth, I had been thinking about this issue in the abstract, and had already drafted

the majority of this essay when direct evidence of the Turing issue showed up.

On Nov 18, 2019, Google announced that they had resolved a security flaw in

AMP4Email.

(https://www.zdnet.com/article/google-patches-awesome-xss-vulnerability-in-gmail/

) A security researcher uncovered the potential for “DOM Clobbering” via

AMP4Email. In a nutshell, a researcher realized that the HTML document object

model (DOM), and the Javascript VM — the “playing field” for those limited AMP

commands, if you will — could be compromised, opening the door for “mal”

operations with AMP. That one example embodies some of the key issues discussed

here — virtual machines, layers, “mal” behavior, and so on. This one was caught;

great. It would be irrational to assume that there won’t be other such issues.

https://www.zdnet.com/article/google-patches-awesome-xss-vulnerability-in-gmail/

8

From 10,000 Points of Vulnerability To 1

Every email designer knows the challenge of platform variations — the permutations
of operating system, client and/or browser, version, bandwidth, CSS, HTML versions
and so on are near-infinite.

Coincidentally, that’s the challenge that a would-be engineer of virus, malware,
spyware or adware faces today if they want to use email as the delivery channel.
Because email is ‘dumb’ and cannot execute instructions, attacks and exploits must
currently aim at the underlying platforms. A virus aimed at Windows — “download
and run this .exe” — won’t attack Android or OS X. A Javascript exploit can’t currently
do anything in the email client itself; it has to escape the dumb ‘box’ of email —
usually by tricking the user — to do something.

In other words, pre-AMP, ‘mal’ operations are inhibited by the sheer breadth of
platforms — because the email client itself is not the target. Giving “the email client”
the capability to run computing instructions introduces a single point for attack:
AMP.

The AMP response is that by limiting operations to “vetted AMP scripts”, risk can be
mitigated.

History suggests otherwise.

There are already email clients with Turing machine capabilities that use proprietary
(“not Internet standards based”) scripting languages. They illustrate the risks that
AMP will face quite well.

In the heyday of Windows and Office, Microsoft attempted to unify its application
suite with a common language -- VB Script. VB Script ran on Word, Excel and the
Outlook email client. VB Script is a relatively simple language, and perhaps security
wasn’t top of mind in the design.

Inevitably, of course, bad actors found exploits and back doors. Email inboxes and
folders are too valuable a target; if they can be targeted, they will be. So-called
“macros” (programs) in VBA have done user-undesirable things in Word, Excel and
Outlook. As a result, even today, Outlook is saddled with the security “cost” that goes
with the VB Script “benefit.” This isn’t a critique of Microsoft and VBA; these “macro
viruses” are just a convenient real-world example. My argument is that they were
inevitable.

9

AMP aims to limit risk by limiting permitted scripting operations. Limiting risk and
eliminating risk aren’t the same result. The issue is not solely whether the limited
operations in and of themselves are risky or not; how these operations are
implemented 'on top of' other Turing-machine layers is material as well. What a
given script command is supposed to do (and not do) is ambiguous; how that
command is implemented on a given 'stack' of computing environments (e.g.
operating system, email client, Javascript VM) will vary. Variance is vulnerability.

A Brief Counter-Argument: Is AMP Too Limiting?
The historical record also suggests a different issue, somewhat at odds with the main
point of this essay but worth noting. Limiting operations — artificially constraining
the 'compute vocabulary' — has a pretty poor track record as to security AND
functionality. A relatively recent example illustrates this point.

Circa 2009, Adobe Flash was the go-to "sandbox" for rich functions and media in web
browsers. It was even, albeit accidentally, the default web video format for at least a
short time. Flash had its own scripting language, with a limited range of functions.
Yet despite the limited operations and "special scripting language" sandbox, Flash
created constant vulnerability headaches for browsers, computers and users.

Steve Jobs signed the end-of-life warrant for Flash when the iPad was released
without Flash support. In his 2010 essay "Thought On Flash", Jobs explained his
reasoning. In brief: Flash was proprietary rather than open; unreliable, insecure,
performed poorly and drained battery, and was not well-designed for touch screens.
His last and most important reason: “We know from painful experience that letting a
third party layer of software come between the platform and the developer
ultimately results in sub-standard apps and hinders the enhancement and progress
of the platform.”

There’s the twist. In accepting a limited platform, with at least some whiff of
“proprietary”, is AMP for Email getting the worst of both ends — the vulnerabilities of
a Turing machine, and the shortcomings of a third party layer of software? Will
mobile pages need to be “accelerated” when 5G becomes widespread; in other
words, is the definition of ‘modern app functionality’ the right target?

Conversely, what is the reason not to go “whole hog”, and allow a full-blown Web
browser with Javascript support within email messages. Or, alternatively, why not a
Turing-complete, email-specific language and environment? If the answer is “it
would be too insecure”, that just doesn’t hold up, at least in the framework of this
argument. When you allow “some operations”, you lose full control of “which
operations.”

https://www.apple.com/hotnews/thoughts-on-flash/

10

What’s Really At Issue: Trust, Control and Manipulation
Everyday language says something about the place we psychologically accord to
different digital channels. “It’s in my email” — commonplace. They are “my”
messages, at “my” address, under “my control.” “Email me” is used daily; “website
me” is not, nor is “app me.” What does that say?

I read my email; I view your web site. Your web page may be “personalized” for me,
but you control it. Users of websites understand the implicit bargain; if you are
bothering to change your web site for me, there’s a reason for it. If the page is
different tomorrow, that’s your decision.

My email is “mine”, though. The address is my digital “home address.” I have both
cyber and legal control, generally speaking, over who can send messages to that
address. If I sign up for your service or site, my email address is likely to be used as
the reliable, permanent channel for my digital identity. Password requests to “my
email” are considered safe and acceptable. Messages from my email address are
messages “from me.” The me/my/personal associations with this particular digital
channel could go on and on.

I’d summarize the email frame as “we assume that it’s in our control.” Email has
earned — rightly — a surprisingly high degree of trust. We treat email messages as
solid, reliable, document-like things, despite their digital nature — legally, practically,
personally and otherwise.

When a thing becomes ‘programmable’, and some other party somewhere else on
the Internet has some control over the programming of that thing, ownership and
control change in a fundamental way. What that thing might “do” is no longer
entirely under the control of the user. The changes in behavior might or might not
be visible, but other parties (or, more likely, algorithms) now have a say in what the
thing does.

Programmed behavior that’s visible and explicitly at odds with the user’s aims is one
issue. Popup ads in a web browser (for example) are clearly not what any user wants,
but because of the scriptability (Turing-ness) of that browser, it’s difficult for them to
prevent it. The adoption of “safe” browsers (Firefox, Brave) to prevent such
shenanigans is an understandable response. The invisible actions and manipulations
that come with programmability are another issue, and probably the more relevant
set for the email community to consider.

11

“Smart” Connected Things Alter Trust
Making a thing both programmable and connected causes a fundamental change
in control and perception. The behaviors and actions of that thing stop being
localized and predictable; it starts gaining “agency” — the capability for independent
or other-party-controlled action — in how we relate to it.

For example — I never had trust issues with thermostats in the past. The mercury
thermostat on the wall did something quasi-smart all on its own, regulating heat
against temperature. Its actions and responses were localized and linear; at
temperature X, stop heating; below X, start heating. It’s a complex function, but
limited enough and understandable enough that trust wasn’t really an issue.

Remotely-programmable thermostats like the Nest changed this. While improving
thermostat “smarts” — programmability and remote control — improved results, the
user-to-device relationship changed — probably for the worse. Trust (or lack of) is
now a legitimate commercial and marketing issue for thermostats and other ‘smart’
devices. Because they are programmable and connected, the cultural Gestalt —
surprisingly insightful — is that they are no longer entirely under our control.

There’s no broad question about the gains that “smart and connected” can offer. In
the narrow domain of email, though, I think trading decades of perceived trust and
user control for a relatively short list of new functions shouldn’t be taken lightly.

“This thing, what is it in itself, in its own constitution? What is its
substance and material?” —Marcus Aurelius

The Motive Question: Why Do This?

If you step back and look at it, the business motive to adopt AMP for email is a little
questionable. Email is generally the most effective digital marketing channel (“38x
ROI!”), preferred by the people using it, with the highest marketing returns. It’s
routinely dismissed overlooked, but continues to deliver as other channels — more
“interactive”, more “functional” — come and go.

It’s worth asking why email continues to be so effective. Is it because of habit?
Trust? User control? There’s no definitive answer, but somehow the proposition that
email needs actionable, scriptable content with ‘modern app functionality’ implies
that email will become more effective with these capabilities. More functions =
better results is almost a truism in the tech world, but that doesn’t mean that it’s
actually true. If interactivity and functionality are indeed “better”, why is the ROI from

12

most interactive, functional digital channels lower than that of email — at least,
marketing ROI.

Does email need to evolve? Certainly. Is this the best evolutionary step? One could
argue that if “software is eating the world”, as Marc Andreesen said, that it’s high
time email became a software platform. I’ve stated some broad reservations, but
absent an alternative — especially an industry-driven, standards-based alternative —
AMP seems to be winning ‘best step available’ momentum.

I get the proposition of app-like functionality within email; app-like functions would
be useful. Several things about that strike me, though.

One, it’s an absurdly low bar to set — in effect, to say “oh, goodie, now email can do
the stuff that web pages were doing 10 years ago.” Two, it is — even in name —
retrograde; email adopting “accelerated mobile pages” just as mobile is poised to
jump to 5G bandwidth, obviating the need for
acceleration-via-constrained-operations. Three, the technology method — adopting
a limited set of functions on top of a language designed (originally in haste) for a
different medium — smacks of a cop-out. Fourth, who set “app-like functionality” as
the objective? Are users so weary of that one extra click to launch the browser that
they’re lining up asking for app-like functionality, or are we buying into the “more
functions = better results” mantra without asking whether it is app-like functions (or
the lack of them) that prevent email from being effective or useful? Are we
thoughtfully accounting for the costs, losses and potential changes to email that
come with adding this relatively limited functionality?

I don’t have a definitive answer. Neither do you; neither does Google. Nobody’s done
this before. It behooves the people in a place to be thoughtful about an industry to
do just that.

Matthew Dunn
Founder, Campaign-Genius

January 2020
matthew@campaign-genius.com

https://www.linkedin.com/in/drmatthewdunn/

